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c© Società Italiana di Fisica

Springer-Verlag 2001

Effects of the scale-dependent vacuum expectation values
in the renormalisation group analysis of neutrino masses
N.N. Singha

Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK

Received: 18 September 2000 / Published online: 23 February 2001 – c© Springer-Verlag 2001

Abstract. The contribution of scale-dependent vacuum expectation values (VEVs) of Higgs scalars, which
gives significant effects in the evolution of the fundamental fermion masses in the minimal supersymmetric
standard model (MSSM), is now considered in the derivation of the analytic one-loop expression for the
evolution of the left-handed Majorana neutrino masses with energies. The inclusion of such an effect of the
running VEV increases the stability of the neutrino masses under quantum corrections even for the low
values of tanβ ≥ 1.42 at the scale µ = 1012 GeV, and leads to a mild decrease of the neutrino masses with
higher energies. Such a trend is common with that of other fundamental fermion masses.

In recent years a large number of theoretical papers were
devoted to building models for generating small neutrino
masses and lepton mixings within or outside the frame-
work of the grand unified theories (GUTs) with extended
U(1) group [1]. Both analytic and numerical studies [2–
4] have been carried out for checking the stability of the
textures of the neutrino mass matrix and lepton mix-
ing matrix under radiative quantum corrections [5]. There
are basically two approaches: the top-down approach [2]
which predicts the neutrino masses and mixings in terms
of GUT-parameters, and the bottom-up approach [6]
which predicts the running parameters at higher scales
in terms of experimentally determined values at low en-
ergies. In the top-down programme, one usually starts
with the running of a set of the RGEs for Yukawa ma-
trices and gauge couplings in the MSSM (or SM), with
three right-handed heavy neutrinos, taking into account
the effects of the heavy neutrino mass thresholds, from
the GUT scale down to the lightest right-handed neu-
trino mass scale (MR1). This fixes the left-handed Majo-
rana neutrino mass matrixmLL(MR1) through the see-saw
mechanism [7] at this scale,

mLL(MR1) = v2
uYν(MR1)M−1

RRY T
ν (MR1). (1)

Below this scale, MR1, the right-handed neutrinos decou-
ple from the theory, and the neutrino mass matrix in (1)
is taken as [2]

mLL(MR1) = v2
uκ(MR1), (2)

where κ is the coefficient of the dimension 5 neutrino mass
operator. In the energy range from MR1 down to low en-
ergy at mt, the running of the coefficient κ in the diago-
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nal charged lepton basis fixes the neutrino mass matrix at
scale mt,

mLL(mt) = v2
uκ(mt). (3)

In the above discussion only the scale dependence of κ is
considered, and not the running of the vacuum expecta-
tion value (VEV), vu, in (1)–(3). This led to the increase
of the neutrino mass eigenvalues with energy scales, giving
a significant effect for low tanβ values. As it is strongly
tanβ-dependent, this effect may lead to the instability
of the neutrino masses under radiative quantum correc-
tions1. For higher values of tanβ the stability is again im-
proved. Such an increasing trend of neutrino mass eigen-
values with the increase in energies is opposite to that of
the general trend shown by other fundamental fermions
(charged leptons and quarks) [8,9]. The effects of the con-
tributions of the scale-dependent vacuum expectation val-
ues (VEVs) of Higgs scalars in the analytic one-loop ex-
pressions in the evolution of quarks and charged leptons
masses at higher energies in the MSSM have been studied
in [8], and this effect is quite significant.
In this paper we study the stability of the magnitudes

of neutrino masses at low tanβ and their running be-
haviour at different energies, by considering the scale de-
pendence [10] of the vacuum expectation value (VEV), vu,
along with that of κ. The expression in (3) is now modified
to

mLL(t) = v2
u(t)κ(t), (4)

1 In [3,4] the stability condition is decided by the change
in texture of the neutrino mass matrix only. Here we empha-
sise that a changing pattern of the overall magnitudes of the
neutrino mass eigenvalues at different energies may also cause
instability
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where vu(t0) = v0 sinβ, v0 = 174GeV, t = lnµ, t0 =
lnmt. The above equation (4) can be written as

d lnmLL(t)
dt

=
d lnκ(t)
dt

+ 2
d ln vu(t)
dt

, (5)

where the second term on the right-hand side of the above
equation is the contribution from the running of the VEV.
The RGEs for vu [8,10] and κ [2,5]in the diagonal charged
lepton basis, for one-loop order in MSSM, in the energy
range t ≥ t0, are given by

d ln vu

dt
=

1
16π2
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g2
1 +
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2 − 3h2

t

]
, (6)

and

d lnκ

dt
= − 1

16π2
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]
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(7)
respectively. Substitution of (6) and (7) in (5) gives

d lnmLL

dt
=

1
16π2

[
− 9
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g2
2 + δi3h

2
τ + δ3jh

2
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]
. (8)

Upon integration from low scale t0 = lnmt to high scale
tR1 = lnMR1 where tR1 ≥ t0, we get the correct expression
for the neutrino mass matrix at t0,

(mLL(t0))ij
(mLL(tR1))ij

= e((9/10)Ig1+(9/2)Ig2)e−Iτ (δi3+δ3j), (9)

If =
1

16π2

∫ ln MR1

ln mt

h2
f (t)dt, (10)

Igi
=

1
16π2

∫ ln MR1

ln mt

g2
i (t)dt � ln

(
gi(tR1)
gi(t0)

)(1/bi)

, (11)

where f = t, τ ; i = 1, 2, 3, and bi = (33/5, 1,−3) for the
MSSM. The correct expression in (9) will certainly affect
the earlier numerical results obtained without taking into
account the effect of the running VEV [2] at scale MR1.

For simplicity we now follow the analysis of the RGEs
for the neutrino mass eigenvalues [4]. With the inclusion of
such a scale dependence of the VEV in (6), the RGEs for
the mass eigenvalues given in [4] in the diagonal charged
lepton basis is now modified to

d lnmνa

dt
=

1
16π2

∑
b=e,µ,τ

[
− 9
10

g2
1 − 9

2
g2
2 + 2h

2
bV

2
ba

]
, (12)

where a = 1, 2, 3, and Vba is the MNS mixing matrix ele-
ment. The correct expression for the neutrino mass ratio
at different energy scales is also obtained by integrating
(12):

Ra(tR1) =
mνa(tR1)
mνa(t0)

≈ e−((9/10)Ig1+(9/2)Ig2)e2V 2
τaIτ . (13)

In getting (13) we have neglected very small effects due to
Iµ,e compared to Iτ , and also we assumed that Vτa does

not change much in the integration range2. For a typical
value of the element of MNS mixing matrix Vτ3 � 1/21/2,
we can get the condition mν3(t0) > mν3(tR1) following
(13), which shows a mild increase in neutrino masses with
the decrease in energies, even for small tanβ ≥ 1.42. This
is due to the fact that the ratioR3(tR1) is now independent
of e6It in the first exponential factor in (13). The same is
true in (9). In fact the contribution of the running VEV
effectively brings about the following replacement in the
exponential factor:

e−((6/5)Ig1+6Ig2−6It) → e−((9/10)Ig1+(9/2)Ig2) (14)

in (9) and (13).
We now study the effect of the running VEV in the

evolution of the squared neutrino mass difference,�m2
ij =

|m2
νi − m2

νj | with energies. By taking the square on both
sides of (13), and considering two mass eigenvalues a =
i, j, we get approximately

�m2
ij(tR1) ≈ �m2

ij(t0)e
−2((9/10)Ig1+(9/2)Ig2)e4V 2

τiIτ , (15)

where we assume that the small difference between Vτi

and Vτj for i, j = 1, 2, 3, does not alter much the last
exponential term which can approximately be taken as
e4V 2

τiIτ � e4V 2
τjIτ ≈ 1 for low values of Iτ . This amounts

to neglecting small changes in the texture of the neutrino
mass matrix which would be relevant for the evolution
of the mixing angles. The evolution of �m2

ij(tR1) is now
stable with the effects of running VEV for both low and
high values of tanβ, otherwise it would have been more
strongly tanβ-dependent with e12It in the exponential fac-
tor in the case where the effect of running VEV is not
included, causing more instability at low tanβ values.
The running of the ratio of two neutrino mass eigen-

values, R23 = mν2/mν3 (and hence the running of RR23)
is independent of the effect of running VEV, so that the
ratio of the ratios is

RR23(tR1) =
R23(tR1)
R23(t0)

≈ e−2δV 2
τ32Iτ , (16)

where
δV 2

τ32 = V 2
τ3 − V 2

τ2, (17)

which can be either positive, negative or zero. For the
positive value, δV 2

τ32 > 0 as in the hierarchical case [2],
one gets the condition

R23(t0) ≥ R23(tR1), (18)

which implies an increase in the neutrino mass ratio mν2/
mν3 with a decrease in the energies [2]. If we start with
degenerate neutrinos, mν2 = mν3 at the scale MR1, then
we would get mν2 > mν3 at the scale mt. This shows that
nearly degenerate neutrinos are not stable under quantum
corrections [3].

2 Such an approximation can be justified for the calculation
of the mass eigenvalues and their ratios as the second expo-
nential term in (13) gives almost 1 for low values of Iτ
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Fig. 1. Variation of R3(t) = mν3(t)/mν3(t0) with energies
t = lnµ for small value of tanβ = 1.63. The results with and
without the effect of running VEV are shown with solid line
and dotted line, respectively

The above relations in (16)–(18) for a = 2, 3 can be
generalised for any pair of mass eigenvalues a = i, j. For
the inverted hierarchical case [2] with mν1 > mν2, we may
have δV 2

τ21 < 0, which leads to

R12(t0) ≤ R12(tR1), (19)

where the neutrino mass ratio mν1/mν2 decreases with
the decrease in energies [2]. The effect of the running VEV
does not change the textures of the neutrino mass matrix
and hence the MNS mixing matrix.
Next we turn to a numerical analysis of the RGEs in

the bottom-up approach in running from low energy scale
t0 to high energy scale, replacing tR1 by running t in the
above equations, (9)–(19). We make use of the following
input values of the running fermion masses mi(mi) of the
third family:

mt,b,τ = (166.5, 4.2, 1.785)GeV, (20)

where, for heavy flavours (top and bottom quarks) the
values are derived from the input pole masses mpole

t =
175.6GeV [11] and mpole

b = 4.7GeV [12,13] using two-
loop RGEs in QCD. The initial input values for the top,
the bottom and τ lepton Yukawa couplings at the top
quark mass scale t0 = lnmt in the RGEs in MSSM are
usually obtained as

ht(t0) = mt/(174 sinβ),
hb,τ (t0) = mb,τ/(174ηb,τ cosβ). (21)

Using the CERN-LEP measurements atMZ = 91.18GeV,

α3(MZ) = 0.118± 0.004, α−1(MZ) = 127.9± 0.1,
sin2 θω(MZ) = 0.2313± 0.0003, (22)

Fig. 2. Variation of R3(t) = mν3(t)/mν3(t0) with energies
t = lnµ for large value of tanβ = 57.29. The results with and
without the effect of running VEV are shown with solid line
and dotted line, respectively

we obtain the values of gauge couplings at scale t0 us-
ing one-loop RGEs, assuming the existence of a one-light
Higgs doublet (n = 1) and five quark flavours below the
mt scale,

α−1
1,2,3(t0) = 58.42, 29.67, 8.89. (23)

The QCD–QED rescaling factors [6] are calculated to be

ηf = (1.54, 1.017), f = b, τ. (24)

As a result of the numerical analysis of the RGEs for
Yukawa and gauge couplings at two-loop level [6] in the
energy range t0 < t < tU , the unification of three gauge
couplings is observed at MU = 1.82× 1016GeV. The val-
ues of Yukawa couplings (ht, hb, hτ ), gauge couplings and
values of integrals Ii defined in (10) and (11) for the dif-
ferent values tanβ = 1.42–60.0 are estimated at different
energy scales.
We present our numerical results in Figs. 1–4; the solid

line refers to the analysis with the effects of running VEV
in the present calculation (referred to as case A). We also
present the corresponding results without the effect of run-
ning VEV in dotted line (referred to as case B) for com-
parison only. With a typical input value Vτ3 = 1/21/2, the
variation of the ratio R3(t) defined in (13), with energy
scales t for the two representative values of tanβ = 1.63
and 57.29, are presented in Figs. 1 and 2, respectively.
These figures show the evolutions of the neutrino mass
eigenvalue mν3 with the increase in energy scale.
We observe that for the high value of tanβ = 57.29 in

Fig. 2 the evolution of the ratio R3(t) = mν3(t)/mν3(t0)
is almost stable in both cases, A and B. However, for the
low value of tanβ = 1.63 in Fig. 1, there is a significant in-
crease in R3(t) at higher energies in case B. For example,
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Fig. 3. Variation of R3(tR1) = mν3(tR1)/mν3(t0) with
ln(tanβ) for MR1 = 1012 GeV. The results with and without
the effect of running VEV are shown with solid line and dotted
line, respectively

at µ = 1.82 × 1016GeV, the ratio R3(t) is about 5.63 in
case B as shown in Fig. 1 by the dotted line. Such an un-
wanted feature which may cause instability is not present
in case A (solid line in Fig. 1). Figure 3 shows the varia-
tion of the neutrino mass, R3(tR1) = mν3(tR1)/mν3(t0),
at a particular scale, tR1 = 27.63 corresponding to MR1 =
1012GeV, with the different values tanβ = 1.42–60. We
see that in the region of low values, tanβ ≥ 1.42, there is
a significant enhancement in R3 ≤ 5.3 in case B whereas
the ratio is stable in case A for all values of tanβ. For
higher values of tanβ the ratio is again stable in case B.
The same analysis is true for the cases of the other two
mass eigenvalues with a = 1, 2. A similar analysis can be
made for the evolution of �m2

ij in (15), which would be
very unstable in the low tanβ region in case B. However,
it is now stable for all values of tanβ under radiative cor-
rections at higher energies in case A.
Finally, we study the relative rates of the evolution

of two neutrino mass eigenvalues in terms of their ratio,
R23 = mν2/mν3 given in (16), in going from low to high
energies. We consider the high value of tanβ = 57.29
where the effect of Iτ is large, and this ratio increases
with the decrease in energies by a few percent only. This
is shown in Fig. 4 where we present the evolution of the ra-
tio of the ratios RR23(t) in (16) with energies. This leads
to a mild increase in the hierarchical relation, mν2/mν3,
at lower energies. As noted earlier, such hierarchical ratios
are independent of the effect of the running VEV. Finally
we point out the changes arising from the running of the
VEV in the earlier calculations [2] of the neutrino masses.
The earlier results at low scale mt in [2] do not change at
all. However if we prefer to express the neutrino mass ma-
trix at higher scaleMR1, then we have to take the effect of

Fig. 4. Variation of the ratio of the neutrino mass ratio
RR23(t) = (mν2(t)/mν3(t)) / (mν2(t0)/mν3(t0)) with energies
t = lnµ for the large value of tanβ = 57.29

the running VEV, vu(tR1) in place of vu(t0), in account,
which modifies the earlier numerical results at the scale
MR1.
To conclude, we have considered the contributions of

scale-dependent vacuum expectation values (VEVs) of
Higgs scalars in deriving the analytic one-loop expres-
sion for the running of the left-handed Majorana neutrino
masses with energies in the MSSM. This gives significant
changes in the expression of the evolution of the neutrino
masses, and also increases the stability of the neutrino
masses under quantum corrections even for low tanβ. We
observed a mild decreasing trend of the neutrino masses
with higher energies, which is now common with that of
all other fermion masses in nature.
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